Технологии-1

Информационно-познавательный ресурс.

Солнечные батареи напечатаны на бумаге в Хемницком техническом университете
21 сентября 2008
Хемницким техническим университетом представлены солнечные батареи, напечатанные на обычной бумаге. В технологии, получившей название 3PV (printed paper photovoltaics – солнечные батареи, напечатанные на бумаге), используются такие традиционные методы печати, как глубокая, флексографская и офсетная, и основания, как для журналов, постеров, упаковок.
В качестве базового электрода солнечного элемента методом печати наносится окисленный цинк, а в качестве прозрачного электрода – поли-(3,4-этилендиокситиофен). И хотя коэффициент полезного действия представленного солнечного элемента составляет всего 1,3%, непрерывная оптимизация материалов позволит, с точки зрения ученых, превысить КПД 5%.
После использования бумажные солнечные батареи могут быть переработаны как бумажные отходы. Таким образом, не только обеспечивается возможность генерации энергии из возобновляемых источников, но и сами солнечные батареи изготавливаются из возобновляемого сырья и перерабатываются.
Источник: http://www.pppv.de




IT-байки: Электроника будущего - бумажная, органическая, фотонная?
Автор: Владимир Романченко
Дата: 30.11.2008
Размышляли ли вы о том, какими станут компьютеры через десяток-другой лет? В погоне за ростом производительности наших вычислительных систем, миниатюризацией и снижением энергопотребления, мы представляем себе самые диковинные гаджеты Будущего – встроенные в куртку, очки, часы, домашнего робота-андроида, любимое кресло или автомобиль.
Гораздо реже мы задумываемся о начинке грядущей электроники. Микроэлектроника превращается в наноэлектронику, и славно, кремний по-прежнему остаётся основой любого электронного чипа.
Однако на деле может оказаться, что Компьютер Будущего будет состоять совсем не из кремниевых полупроводников. А, например, из… бумажных. Или из фотонных. Или вообще из гибкой полужидкой органики. Малореальная экзотика? Да как сказать. Несколько примеров последних научных разработок, которые собраны в сегодняшней публикации, призваны продемонстрировать тот факт, что в нашем сегодняшнем мире любая экзотика и фантастика совсем неожиданно может оказаться реальностью уже завтра. Как говорится в одной старинной программе, откиньтесь на спинку кресла.
Мы уже давно перестали удивляться применению самой разнообразной органики в составе полупроводниковых устройств. Взять те же дисплеи и телевизоры на базе органических светоизлучающих диодов (OLED, Organic light-emitting Diode). Но удивительная вещь даже по нашим диковинным временам - это память из… бумаги. С точки зрения практичности бумага очень интересна в качестве носителя для производства полупроводниковой памяти хотя бы тем, что производится без особых специфических требований при комнатной температуре, она лёгкая и недорогая. Именно из бумаги предложили делать чипы учёные из Нового Лиссабонского университета (CEMOP UNINOVA, the New University of Lisbon), Технологического ядерного института (The Technology & Nuclear Institute), Университета Авьеро (University of Aveiro) и Университета Альгарве (The University of Algarve). Изложение практической реализации этой идеи описано в статье Write-erase and read paper memory transistor, опубликованной в одном из последних выпусков журнала Applied Physics Letters.

Бумага, используемая для создания "бумажной памяти", представляет собой волокна древесины сосны и полиэстера, смешанные вместе и закреплённые ионообменным композитом. Далее с помощью магнетронного распыления на полученный носитель с двух сторон наносится окись цинка с примесью галлия и индия. В результате получается тонкоплёночный полупроводниковый транзистор, где бумага играет роль подложки и одновременно слоя "бумажного" диэлектрика. Пороговое напряжение такого ZnO-TFT полевого транзистора составляет порядка 19В, a дрейфовая подвижность достаточно высока – до 28 см²/В*с (cm2/Vs, сантиметров в квадрате на вольт-секунду), при этом размах напряжения управления затвором составляет 1,39В на декаду и соответствующее коэффициент переключения - 3x105.
Интересно также заметить, что светопропускание такого материала (включая свойства подложки) составляет порядка 80% в видимой части спектра. Иными словами, полупроводниковая бумага ещё и практически прозрачна.
Вот такое замечательное оптоэлектронное устройство на базе полупроводникового нанокомпозита - с достаточно низкой ценой, высокой подвижностью поля, и главное, работоспособное при комнатной температуре, вполне может стать основой для создания следующего поколения гибкой, и, при желании, почти невидимой электроники. Итогом проекта может стать получение патента на базовые модули схемотехники – логические инвертирующие элементы, генераторы, универсальные логические вентили (NAND и NOR), которые лягут в основу электроники будущего - органической электроники, где ключевые элементы транзисторов – сток, исток, затвор, диэлектрик, канал, выполнены на базе органики.

Однако и это ещё не всё. Учёные подчёркивают, что уникальным замечательным свойством разработанной ими полупроводниковой бумаги является способность хранить информацию "послойно". Скажем, для записи первого слоя данных на бумагу подаётся пять вольт, для стирания этого слоя – минус пять вольт, для записи следующего слоя – десять вольт. Что интересно, в следующий раз при подаче минус пяти вольт для стирания первого слоя второй слой информации затронут не будет.
Интригующая технология, не правда ли? "Нафаршировать" лист бумаги привычного формата А4 полупроводниками, записывать на него гигабайты данных, а будет мало – взять следующий листочек, и так – стопочкой до петабайтов. Можно пойти дальше и объединить "бумажную память" с "электронными чернилами – вот вам недорогие гибкие электронные книги с сенсорным экраном, где текст сопровождается множеством статических и динамических картинок. Да мало ли что можно придумать с таким интересным носителем информации, особенно с учётом того что он практически прозрачен…

По мнению изобретателей, для доведения технологии до коммерческого внедрения понадобится ещё примерно пять-шесть лет. Однако уже сейчас совершенно уверены в успехе: "У нас есть бумажный транзистор; мы смогли сделать из него память. У нас есть всё необходимое для достижения успеха".

А "на посошок" сегодня будет совсем уж фантастическая история про… фотонные микросхемы. Полагаю, все наши читатели, так или иначе, сталкивались с фантастическими идеями использования так называемого "солнечного ветра" для путешествий между планетами, звёздными системами, а то и галактиками. Мол, выныриваем на земной орбите, натягиваем невесомый многокилометровый парус, и используем давление солнечной радиации – "солнечного ветра", в качестве движущей силы для космического парусника.

Романтично, но, увы, в реальной жизни применимо мало. Совсем другое дело, когда речь заходит о масштабах, измеряемых нанометрами. Оказывается, силы "фотонного ветра" более чем достаточно для функционирования механизмов с наномасштабами. На практике эту идею подтвердили учёные из Школы инженерных и прикладных наук при Йельском университете (Yale School of Engineering & Applied Science). Своей работой учёные открыли путь новому классу полупроводниковых устройств, управляемых силой света. В будущем такая электроника сможет привести к появлению высокопроизводительных вычислительных систем и сверхбыстрых телекоммуникационных устройств с мизерным потреблением энергии, сверхчувствительных датчиков и к появлению совершенно неизведанного нынче класса устройств, представить которые нам нынче попросту не хватит воображения. Изобретение, появившееся на стыке двух новых физических дисциплин – нанофотоники и наномеханики, позволит в перспективе встраивать сверхмалые оптические и механические элементы непосредственно в полупроводниковые микросхемы.

Так какими же они будут в действительности, микросхемы будущего? Кремниевыми, бумажными, органическими, полужидкими, жидкокристаллическими или вовсе фотонно-механическими? Скорее всего, и теми, и другими, и третьими, и неизвестно ещё какими, пока не придуманными десятыми. Пройдёт совсем немного времени, и в нынешних десятках и сотнях гигабайт нам попросту станет тесно, а искусственные интеллекты и гаджеты будущего потребуют многих гигафлопсов вычислительной мощности при милливаттном энергопотреблении. И электроника к тому времени станет совсем иной, да и мы уже будем совсем другими…
________________________________________
Источники:
• National Institute of Standards and Technology (NIST)
• The Nature
• Applied Physics Letters
• Centro de Ingestigacao de Materiais at Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa
• Tech-On
• Yale University

Органическая электроника
Органическая (печатная) электроника – одно из самых новых и перспективных направлений в электронике сегодня. Этот термин используется для обозначения технологии, которая позволяет печатать электронику на обычных носителях (например, бумаге, пластмассе и ткани), используя стандартные процессы печати.
Благодаря появлению нового направления разработчикам электронного оборудования стали посильны оригинальные и порой фантастические решения: гибкие дисплеи, гибкие солнечные батареи, электронные книги, «умная» упаковка, чипы радиочастотной идентификации и т.д. В 2007 году рынок органической электроники оценивался в 1,18 млрд долларов. Около 59% рынка занимали OLED-дисплеи .





Семимильные шаги развития органической и печатной электроники
Опубликовано ssu-filippov в 17 января, 2012 - 00:33

Последние десять лет мир переживает бум развития органической и печатной электроники, которая постепенно начинает отыгрывать первые рубежи у классической неорганической (кремниевой) электроники. Никогда ещё такими быстрыми темпами не сокращался временной промежуток между фундаментальными исследованиями и их практическим применением. Уже появились серийные производства новых изделий и прототипы гибких и лёгких, тонких и недорогих органических электронных устройств. Сотни компаний и научно-исследовательских институтов участвуют в гонке за новый рынок, который, по расчётам, достигнет объёмов в 35 миллиардов долларов в 2015 году и через десять лет на порядок увеличится. Что происходит в России в области органической и печатной электроники?
Гибкие приборы
История этого научного направления началась в 1977 году, когда химики Алан Хигер, Алан Мак-Диармид и Хидэки Сиракава опубликовали свои исследования, где показали, что модифицированный галогенами полиацетилен может проводить электрический ток почти как металл. Это открытие и другие фундаментальные исследования в области органических полимеров способствовали развитию органической электроники, которая комбинирует разработки в физике твёрдого тела и молекулярной физике, органической и неорганической химии и наук о материалах, электронике и печатном деле.
В 2000 году основатели прорывного направления получили Нобелевскую премию по химии «За открытие проводимости в полимерах».
Органическая и печатная электроника – это новая технология, которая позволит выпускать тонкие и гибкие устройства, например с помощью недорогого рулонного производства (roll-to-roll-процесса). Электронные приборы и их компоненты можно печатать на принтере, если в качестве чернил использовать материалы с углеродными соединениями. Так можно производить всю линейку электрических и электронных компонентов микросхем – от транзисторов, памяти и батарей до процессоров, датчиков и дисплеев, когда светоизлучающие полимеры печатаются на пластмассовых, металлических или бумажных плёнках. Это «умная» упаковка, освещение на органических светодиодах – OLED (organic light-emitting diode), дешёвые электронные метки радиочастотной идентификации RFID (radio frequency identification), скручиваемые в рулон дисплеи, гибкие солнечные батареи, одноразовые приборы для диагностики и новые игрушки, гибкие сенсорные экраны, печатные батареи, транзисторы и устройства памяти. Плюсы и минусы органических гаджетов
Органическая электроника имеет неоспоримые преимущества перед неорганической, которая постепенно подходит к своим физическим пределам. Это низкая стоимость в перспективе, недорогое экологичное производство (печатные технологии) органических элементов, их универсальные качества – маленький вес, гибкость, прозрачность, длительный срок хранения и надёжность, возможность печатать многие компоненты электронных устройств «в одном флаконе».
При этом не надо использовать затратные вакуумные процессы, стоимость оборудования в десятки раз ниже, чем в микроэлектронном производстве. Основное преимущество органической электроники в том, что на рулоне струйным принтером, гравюрной печатью или другим способом наносятся все компоненты, причём скорость движения рулона может достигать 10 метров в минуту. А это говорит о высокой производительности и низкой себестоимости.
Можно быстро и дёшево реализовать любую схемотехническую идею, сначала выполнив её на компьютере, а потом распечатать на подложке. Стоимость таких производств по сравнению с производствами кремниевой электроники на порядок ниже.
«Почему печатные технологии нам интересны? Это потенциал взрывного роста, особенно в пяти-шестилетней перспективе. … Мы считаем эту область перспективной для венчурных инвестиций, хотя она, по моей оценке, находится на том уровне, который кремниевая электроника достигла 40–50 лет назад», – заявил на IV Международном форуме по нанотехнологиям Rusnanotex Георгий Колпачев, управляющий директор «Роснано».
С другой стороны, производство малых партий очень дорого, невероятно затратными оказываются изменения производства и дизайна, эффективность работы и срок жизни некоторых изделий остаются недостаточно высокими, да и исследованиям в области органической электроники необходимы всё большие вложения.
Опрошенные эксперты сходятся во мнении: предстоит немало потрудиться, чтобы справиться с проблемами, которые сегодня мешают запустить «органические гаджеты» в массовое производство.
«Огромный прогресс пластиковой электроники, который мы наблюдаем сегодня, на мой взгляд, в основном остаётся в сфере фундаментальных исследований, а отставание от неорганической электроники пока не уменьшается. Но даже в фундаментальной области учёным предстоит решить исключительно важные проблемы, связанные с поиском новых материалов – бездефектных полимеров. И это несмотря на все усилия, предпринимаемые человечеством, свидетельство которых – несколько последних премий по физике и химии, связанных с исследованиями в этой области», – считает Валерий Кобрянский, ведущий сотрудник ФИАН, доктор химических наук.

Органические светодиоды
Чтобы выделить приоритетные направления развития новой отрасли, которые находятся на разных стадиях развития, – от фундаментальных исследований до серийного производства, и обозначить главные проблемы, участники отрасли составляют так называемые дорожные карты. Свою дорожную карту для органической и печатной электроники в июне 2011 года на конференции во Франкфурте представила OE-A (Ассоциация органической электроники). Это международная рабочая группа, которая объединяет деятельность более 180-ти производящих компаний и научно-исследовательских институтов из 29 стран Европы, Северной Америки, Азии и Австралии в органической и печатной электронике. Согласно этой дорожной карте, OLED-дисплеи и освещение представляют собой прорывное направление.

OLED – органические светодиоды, в которых в качестве излучающего слоя используют органический полимер. Последние десять лет органические светодиоды производят в массовом порядке и встраивают в мобильные телефоны, навигаторы, светильники. Уникальные свойства этих светодиодов ещё не научились эффективно использовать: низкую стоимость при использовании методов печати, возможность создавать светящиеся панели большой площади с высоким качеством изображения, а также сверхтонкие, гибкие и прозрачные экраны и источники освещения (в том числе с использованием гибридных материалов). Поэтому захват рынка органическими светодиодами произойдёт не раньше чем через 5–10 лет.
По оценкам экспертов OE-A, к 2014 году компании начнут производить сворачиваемые в рулон цветные дисплеи, OLED-телевизоры, на рынке появится декоративное освещение, к 2019-му – электронные обои и гибкие осветительные элементы, а после 2020 года органические светодиоды проникнут во все технологии освещения, появятся OLED- телевизоры в рулонах.

«В нашей стране в основном развиваются такие направления органической электроники, как освещение, дисплеи и солнечные батареи. И я абсолютно убеждён, что это вопрос времени и больших денег, когда они займут свою нишу, а существующие дисплеи будут заменены OLED», – говорит Алексей Витухновский, заведующий Отделом люминесценции им. С. И. Вавилова ФИАН, председатель научного совета по люминесценции РАН, доктор физико-математических наук.
Тем не менее, рассказывает учёный, в нашей стране органическими светодиодами и материалами для них занимаются разрозненные группы: в ФИАНе, в Физико-техническом институте имени А. Ф. Иоффе, в Институте физической химии и электрохимии имени А. Н. Фрумкина, Институте проблем химической физики, Институте синтетических полимерных материалов им. Н. С. Ениколопова, Центре фотохимии. Прототипы органических светодиодов создаёт ОАО ЦНИИ «Циклон» – они закупили южно-корейскую пилотную линию.
Хотя нам известны принципы работы органических светодиодов, многое остаётся неясным, и, самое главное, основные показатели работы пока невысоки. Так, одна из главных характеристик их эффективности – внешний квантовый выход – доходит до 20–22 процентов, а важный энергетический показатель – светоотдача – 50 Лм/Вт.
Между тем, американские и европейские производители собираются выпускать OLED в 100 Лм/Вт уже в 2015 году. Главные игроки на этом рынке в Европе, компании BASF, OSRAM Opto Semiconductors, Philips и AIXTRON, финансируемые немецким Министерством образования и науки, объединили свои усилия в структуре «TOPAS-2012», чтобы разработать новые материалы и рулонные технологии для производства светодиодов, в основном для нужд освещения.
Очень активны в этой области Samsung, NOVALED и американские компании, например Applied materials и General Electric. Все производители демонстрируют неплохие опытные образцы, но до массового производства коммерчески успешных органических светодиодов пока не дошло.

Телевизор компании Samsung с прозрачным OLED-экраном.

«Если сейчас вложить большие средства в эту отрасль, то совместными усилиями можно сделать мощный рывок, улучшив показатели светодиодов, – считает Витухновский. – Пять лет мы сотрудничали с ОАО “ЦНИТИ Техномаш” в рамках госконтракта, который перешёл в ОКР, по разработке светоизлучающих устройств для освещения. Теперь мы планируем подписать с ними очередной договор по разработке перспективных “roll-to-roll”-технологий для производства светодиодов».

http://www.nanonewsnet.ru/




Гибкая электроника станет массовой.
Исследователи из университета Уэйк Форест в штате Северная Каролина совершили значительный прорыв в области гибкой органической электроники. Разработанная ими технология позволяет существенно удешевить процесс создания органических схем и вывести устройства на их основе в массовое производство.
Основными разработчиками технологии являются профессор Оана Юрческу из университета и двое ее аспирантов. По словам ученых спектр применения их разработки чрезвычайно широк – искусственная кожа, «умные» бинты, гибкие экраны и электроника, электронные обои и многое другое. Мысль о том, что будущее принадлежит пластмассовым или органическим полупроводникам, массовое производство которых будет осуществляться с помощью осаждения на подаваемый рулонами материал, печати или осаждения из спрея высказывалась уже давно.
На современном рынке слово «электроника» по-прежнему вызывает ассоциации с чем-то дорогим, поскольку производство схем на основе кремния достаточно затратно. Однако органическая электроника на углеродной основе будет и во много раз дешевле и легче в производстве, а также позволит создавать гибкие схемы, уверяет Оана Юрческу. «Для того, чтобы внедрять эти технологии в производство нужно понимать лежащие в их основе принципы, - говорит ученый. – Полевые транзисторами, которыми мы занимаемся, являются базовыми строительными блоками всей современной электроники. Наше открытие проливает свет на то, как структура молекул влияет на работу, на все электрические процессы и мы полагаем, что нами найден ключ к созданию органической электроники, эффективной и дешевой в производстве».